Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 260, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454328

RESUMEN

In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.


Asunto(s)
Aconitum , Filogenia , Aconitum/genética , Aconitum/química , Aconitum/metabolismo , Orgánulos/genética , Tibet
2.
Genes (Basel) ; 14(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36833206

RESUMEN

Chrysosplenium macrophyllum Oliv., belonging to the family Saxifragaceae, is a traditional and unique Chinese herbal medicine. However, the lack of adequate molecular markers has hampered the progress regarding population genetics and evolution within this species. In this research, we used the DNBSEQ-T7 Sequencer (MGI) sequencing assay to analyze the transcriptome profiles of C. macrophyllum. SSR markers were developed on the basis of transcriptomic sequences and further validated on C. macrophyllum and other Chrysosplenium species. The genetic diversity and structure of the 12 populations were analyzed by using polymorphic expressed sequence tag simple sequence repeat (EST-SSR) markers. A potential pool of 3127 non-redundant EST-SSR markers were identified for C. macrophyllum in this study. The developed EST-SSR markers had high amplification rates and cross-species transferability in Chrysosplenium. Our results also showed that the natural populations of C. macrophyllum had a high level of genetic diversity. Genetic distance, principal component analysis, and popular structure analysis revealed that all 60 samples clustered into two major groups that were consistent with their geographical origins. This study provided a batch of highly polymorphic EST-SSR molecular markers that were developed via transcriptome sequencing. These markers will be of great significance for the study of the genetic diversity and evolutionary history of C. macrophyllum and other Chrysosplenium species.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Etiquetas de Secuencia Expresada , Marcadores Genéticos , Repeticiones de Microsatélite
3.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5520-5529, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471968

RESUMEN

The NAC(NAM/ATAF/CUC) transcription factors are members of the largest transcriptional gene family in plants and play an essential role in the response of plants to drought stress. To identify the number and function of the NAC gene family in Carthamus tinctorius, the present study adopted bioinformatics methods to identify NAC gene family members based on the whole genome data of C. tinctorius, and analyzed their physicochemical properties, chromosomal location, phylogenetic relationship, gene structure, conserved domain, and conserved motif. Meanwhile, the real-time fluorescence-based quantitative RT-PCR(qRT-PCR) was used to analyze the transcription level of four NAC genes under drought stress in different time. The results showed that C. tinctorius contained 87 NAC genes unevenly distributed on 11 chromosomes, while no NAC gene was found on chromosome 12. The encoded proteins were 103-974 amino acids and the number of CDS ranged from 3 to 9. According to the phylogenetic relationships, 87 NAC genes were clustered into17 subfamilies. The analysis of conserved domains and motifs revealed that most of the genes contained five conserved subdomains, A-E and motif2 was the most conserved among NAC genes. The expression pattern analysis showed that the transcription levels of four NAC genes related to drought resistance were all up-regulated after drought stress treatment for different time, suggesting that these four NAC genes may be related to drought resistance of C. tinctorius. This study is expected to provide a theoretical basis for further functional analysis of NAC transcription factors in C. tinctorius and references for the cultivation of drought-tolerant C. tinctorius varieties.


Asunto(s)
Carthamus tinctorius , Sequías , Carthamus tinctorius/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes
4.
BMC Genomics ; 23(1): 109, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135479

RESUMEN

BACKGROUND: Seed germination is a series of ordered physiological and morphogenetic processes and a critical stage in plant life cycle. Tamarix hispida is one of the most salt-tolerant plant species; however, its seed germination has not been analysed using combined transcriptomics and metabolomics. RESULTS: Transcriptomic sequencing and widely targeted metabolomics were used to detect the transcriptional metabolic profiles of T. hispida at different stages of seed germination and young seedling growth. Transcriptomics showed that 46,538 genes were significantly altered throughout the studied development period. Enrichment study revealed that plant hormones, such as auxin, ABA, JA and SA played differential roles at varying stages of seed germination and post-germination. Metabolomics detected 1022 metabolites, with flavonoids accounting for the highest proportion of differential metabolites. Combined analysis indicated that flavonoid biosynthesis in young seedling growth, such as rhoifolin and quercetin, may improve the plant's adaptative ability to extreme desert environments. CONCLUSIONS: The differential regulation of plant hormones and the accumulation of flavonoids may be important for the seed germination survival of T. hispida in response to salt or arid deserts. This study enhanced the understanding of the overall mechanism in seed germination and post-germination. The results provide guidance for the ecological value and young seedling growth of T. hispida.


Asunto(s)
Germinación , Tamaricaceae , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Metabolómica , Plantones/genética , Semillas/genética , Tamaricaceae/genética , Transcriptoma
5.
Mitochondrial DNA B Resour ; 6(10): 3028-3030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568572

RESUMEN

Chrysosplenium nudicaule Bunge, Tibetan name 'Yajima,' growing in the highlands of China is a perennial herb belonging to the genus Chrysosplenium Saxifragaceae. As a traditional Chinese medicine, it has been used to treat digestive diseases for hundreds of years. The complete chloroplast genome of Chrysosplenium nudicaule is 152,775 bp in length and comprises two inverted repeats (IR, 25,962 bp), a large single-copy region (LSC, 83,533 bp), and a small single-copy region (SSC, 17,318 bp). It harbors 112 genes, including 78 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. In addition, the rpl32 gene was deleted. The GC content of the whole chloroplast genome is 37.54%. This chloroplast genome resource will be useful for study on the evolution and genetic diversity of C. nudicaule in the future.

6.
Plant Biotechnol J ; 19(9): 1725-1742, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33768699

RESUMEN

Safflower (Carthamus tinctorius L.), a member of the Asteraceae, is a popular crop due to its high linoleic acid (LA) and flavonoid (such as hydroxysafflor yellow A) contents. Here, we report the first high-quality genome assembly (contig N50 of 21.23 Mb) for the 12 pseudochromosomes of safflower using single-molecule real-time sequencing, Hi-C mapping technologies and a genetic linkage map. Phyloge nomic analysis showed that safflower diverged from artichoke (Cynara cardunculus) and sunflower (Helianthus annuus) approximately 30.7 and 60.5 million years ago, respectively. Comparative genomic analyses revealed that uniquely expanded gene families in safflower were enriched for those predicted to be involved in lipid metabolism and transport and abscisic acid signalling. Notably, the fatty acid desaturase 2 (FAD2) and chalcone synthase (CHS) families, which function in the LA and flavonoid biosynthesis pathways, respectively, were expanded via tandem duplications in safflower. CarFAD2-12 was specifically expressed in seeds and was vital for high-LA content in seeds, while tandemly duplicated CarFAD2 genes were up-regulated in ovaries compared to CarFAD2-12, which indicates regulatory divergence of FAD2 in seeds and ovaries. CarCHS1, CarCHS4 and tandem-duplicated CarCHS5˜CarCHS6, which were up-regulated compared to other CarCHS members at early stages, contribute to the accumulation of major flavonoids in flowers. In addition, our data reveal multiple alternative splicing events in gene families related to fatty acid and flavonoid biosynthesis. Together, these results provide a high-quality reference genome and evolutionary insights into the molecular basis of fatty acid and flavonoid biosynthesis in safflower.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/genética , Cromosomas , Flavonoides , Ácido Linoleico , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA